

BASICS PROGRAM: Breeders Seed (Chiedozie Egesi and Peter Kulakow)

Research Program on Roots, Tubers and Bananas

Ibadan 18 April 2016

Component Overview: Vision

- 1. A regular supply of certified nucleus and pre-basic seed for released cassava varieties is produced and sold to basic seed producers in Nigeria
- 2. A new rapid multiplication system, SAH, increases the rate of multiplication and delivery of prebasic seed with starting material initiated from tissue culture

Component Overview: Vision

- 3. Variety demand by diverse end users in differentiated cassava markets is determined by communication with end users, demand creation trials and results of cassava variety adoption studies
- 4. Certification standards and practice for prebasic and basic seed result in increased commercial exchange of high quality stems
- 5. Backstopping and co-learning with project partners improves project performance and increases exchange of high quality seed

Cassava Varieties Released in Nigeria

Research Program on Roots, Tubers and Bananas

S/N	Official clone name	Original Name	Variety Name	Year of Release	Tissue Culture
1	IITA-TMS-IBA30555	TMS-30555	NICASS 10	1976	yes
2	IITA-TMS-IBA30572	TMS-30572	NICASS 1	1984	yes
6	IITA-TMS-IBA8200058	TMS-82/00058	NICASS 5	1986	yes
14	NR8082	NR-8082	NICASS 14	1986	yes
10	IITA-TMS-IBA50395	TMS-50395	NICASS 15	1986	yes
15	NR8212	NR-8212	NICASS 16	1986	yes
9	IITA-TMS-IBA30001	TMS-30001	NICASS 18	1986	yes
19	IITA-TMS-IBA91934	TMS-91934	NICASS 19	1986	yes
24	TMEB 419	TME-419	NICASS 20	2005	yes
20	IITA-TMS-IBA972205	TMS 97/2205	NICASS 21	2005	yes
21	IITA-TMS-IBA980505	TMS 98/0505	NICASS 22	2005	yes
22	IITA-TMS-IBA980510	TMS 98/0510	NICASS 23	2005	yes
23	IITA-TMS-IBA980581	TMS 98/0581	NICASS 24	2005	yes
26	IITA-TMS-IBA920057	TMS 92/0057	NICASS 26	2006	yes
25	IITA-TMS-IBA920326	TMS 92/0326	NICASS 27	2006	yes
28	IITA-TMS-IBA961632	TMS 96/1632	NICASS 28	2006	yes
27	IITA-TMS-IBA980002	TMS 98/0002	NICASS 29	2006	yes
30	IITA-TMS-IBA961089A	TMS 96/1089A	NICASS 31	2008	yes
33	IITA-TMS-IBA010040	TMS 01/0040	UMUCASS 34	2010	yes
32	IITA-TMS-IBA000203	TMS 00/0203	UMUCASS 35	2010	yes
36	IITA-TMS-IBA011368	TMS 01/1368	UMUCASS 36	2011	yes
38	IITA-TMS-IBA011412	TMS 01/1412	UMUCASS 37	2011	yes
37	IITA-TMS-IBA011371	TMS-01/1371	UMUCASS 38	2011	yes
41	CR36-5	CR 36-5	UMUCASS 41	2012	yes
43	IITA-TMS-IBA982132	TMS-98/2132	UMUCASS 42	2012	yes
42	IITA-TMS-IBA011206	TMS-01/1206	UMUCASS 43	2012	yes
44	NR07/0220	NR 07/0220	UMUCASS 44	2014	yes
45	IITA-TMS-IBA070593	TMS-07/0593	UMUCASS 45	2014	yes
46	IITA-TMS-IBA070539	TMS-07/0539	UMUCASS 46	2014	yes

Initial Target Varieties

- Initial target of improved varieties with highest demand
 - TME419 High starch
 - TMS-IBA980581 High starch
 - TMS-IBA980505 High starch
 - TMS-IBA961632 High starch
 - TMS-IBA070593 -- Biofortified
- 26 total varieties are currently in tissue culture

- SAH is potential game changing technology for rapid multiplication that can increase multiplication rates from the current 1:5 to 1:40 times per year to 1:5 per month or more
- Proof of Concept trial under way in Argentina
- In vitro multiplication suitable for five varieties
 - Ramada Paso
 - Rocha
 - Mpar 75
 - Santa Catarina
 - Palomita
 - Update: In vitro culture has been growing very slow.
 Micropropagation is used only to keep the initial material.

- In vitro transfer to SAH
 - All different types of explants could be rooted and developed into SAH plants.
 - Initial growth and rooting speed was affected by the in-vitro conditions of the mother plant.
 - Success rate: 98% of the in-vitro explants transferred into SAH grew into plants
 - 75 initial in-vitro plants were transferred from test tubes to SAH
 - Some adjustment in relation to the number of plants per container needs to be studied

- SAH multiplication and protocol
 - In-vitro: plants can be cut every 30 days
 - SAH: plants can be cut every 13-15 days
 - In-vitro produces very variable plants, some test tubes show very good growth, other plants are weak. SAH produces vigorous plants in all cases.
 - Cassava multiplies in SAH: from 100 SAH plants = 500 plants were obtained in one month.
 - Note: there were a few issues with growth room temperature that might have slowed growth because the conditions were adjusted to potato

- A protocol for Cassava SAH multiplication has been developed
 - Optimal environmental factors are being determined (light intensity, temperature)
 - Two different nutrient solutions have being tested
- **Propagation success:** 93 % of 500 SAH cuttings developed into plants.

SAH Protocols and workshop

• Plants growing in SAH produced many roots and they performed very well after transplant. SAH plants transplanted into pots grew to 22 cm in 20 days.

SAH Workshop scheduled for 25-28 April 2016 in Mar del Plata, Argentina

2016 IITA Seed Multiplication Farms

- Managed by Dr. Richardson Okechukwu
- Utilizes current best practices for basic seed
 production
- Oyo state Cassava farms are located in 3 contiguous locations around Iddo local government area near lbadan.
 - Akuffo Farm Settlement 5 ha (multiplication and research)
 - Akinsola Farm 10 ha (multiplication and demonstration)
 - Oyenuga Farm- 25 ha (multiplication farm)
- Available varieties --
 - Primarily TME419 in abundant supply
 - Smaller quantities of IBA980581, IBA961632 and IBA980505

2016 IITA Seed Multiplication Farms

- Establish at least 2 isolated and irrigated seed multiplication farms for first generation pre-basic production of products of SAH
- Utilize current best practices for prebasic and basic seed production
- Coordinate prebasic production with certification
 process
- Production of prebasic stems for sale to commercial basic seed producers – NRCRI, IITA and other prebasic stem producers receive income from all stem transactions

Key Results: Lead Indicators

Indicators for breeders seed include:

- Variety specific multiplication rates for all stages of stem production
- Quality management records
- Seed flows tracked
- Cost tracking
- Revenue generated
- Details will be developed in M&E planning

2016 Work Plan: Milestones

- SAH technology introduced to three labs in Africa
 - SAH workshop held in Argentina
 - SAH installations developed in Africa
 - Pilot testing of SAH in Africa using backstopping support from SAHtechno.
- First year demand creation trials established
 - Initial varieties selected for the processor group and for village seed entrepreneur group
 - Protocols developed
 - First year trials established in 4 locations on station and 4 locations on-farm by NRCRI and IITA
- First year delivery of 100K QPM to Context Network

2016 Milestone- Interdependencies

and Banana[,]

- Stability of markets
- Seasonal weather variability
- Demand for planting materials
- Cost and price stability for stems
- Prebasic supply chain functioning
 - Tissue culture
 - identify confirmed,
 - virus indexing,
 - Multiplication goals achieved
 - SAH and rapid multiplication
 - Pre-basic seed nurseries estblished
 - Delivery/sale of stems to basic seed producers
- **Certification of prebasic seed initiated and feasible**
- Coordination with other projects and stem suppliers